Answer:
the density of indium is 7.2 g/cm^3
Explanation:
The computation of the density of indium is shown below:
Given that
Mass = 16.6 g
Volume = 48.6 c,^3 - 46.3cm^3 = 2.3 cm^3
Based on the above information
As we know that
Density = mass ÷ volume
So,
= 16.6g ÷ 2.3 cm^3
= 7.2 g/cm^3
hence, the density of indium is 7.2 g/cm^3
We simply applied the above formula so that the correct value could come
And, the same is to be considered
Answer:
C. tiny particles called charges flowing through the wires.
Explanation:
<h3> Hello!</h3>
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume.
Hope it helps!
The car undergoes an acceleration <em>a</em> such that
(45.0 km/h)² - 0² = 2 <em>a</em> (90 m)
90 m = 0.09 km, so
(45.0 km/h)² - 0² = 2 <em>a</em> (0.09 km)
Solve for <em>a</em> :
<em>a</em> = (45.0 km/h)² / (2 (0.09 km)) = 11,250 km/h²
Ignoring friction, the net force acting on the car points in the direction of its movement (it's also pulled down by gravity, but the ground pushes back up). Newton's second law then says that the net force <em>F</em> is equal to the mass <em>m</em> times the acceleration <em>a</em>, so that
<em>F</em> = (4500 kg) (11,250 km/h²)
Recall that Newtons (N) are measured as
1 N = 1 kg • m/s²
so we should convert everything accordingly:
11,250 km/h² = (11,250 km/h²) (1000 m/km) (1/3600 h/s)² ≈ 0.868 m/s²
Then the force is
<em>F</em> = (4500 kg) (0.868 m/s²) = 3906.25 N ≈ 3900 N
Potential and kinetic energy