Answer:
Ф = 28.9°
Explanation:
given:
radius (r) = 117m
velocity (v) = 25.1 m/s
required: angle Ф
Ф = inv tan (v² / (r * g)) we know that g = 9.8
Ф = inv tan (25.1² / (117 * 9.8))
Ф = 28.9°
Collision domain is a portion in the network where there is a possibility of formation of packets. This occurs when two or more devices are able to send a packet to a single switch or port on the network that is shared, on the same time. It was noted that this collision domain reduces the efficiency of the network.
For this item, the first packet is the whole switch with the three devices. Next one would be first of the three devices that is connected to the other port. Similarly, the third one would be the second of the three devices that is also connected to the switch. Therefore, the answer is 3.
Range of a projectile motion is given by
R = v cos θ / g (v sin θ + sqrt(v^2 sin^2 θ + 2gy_0)); where R = 188m, θ = 41°, g = 9.8m/s^2, y_0 = 0.9
188 = v cos 41° / 9.8 (v sin 41° + sqrt(v^2 sin^2 41° + 2 x 9.8 x 0.9)) = 0.07701(0.6561v + sqrt(0.4304 v^2 + 17.64)) = 0.05053v + 0.07701sqrt(0.4304v^2 + 17.64)
0.07701sqrt(0.4304v^2 + 17.64) = 188 - 0.05053v
0.005931(0.4304v^2 + 17.64) = 35344 - 19v + 0.002553v^2
0.002553v^2 + 0.1046 = 35344 - 19v + 0.002553v^2
19v = 35344 - 0.1046 = 35343.8954
v = 35343.8954/19 = 1860 m/s
Answer:
f = 931.1 Hz
Explanation:
Given,
Mass of the wire, m = 0.325 g
Length of the stretch, L = 57.7 cm = 0.577 m
Tension in the wire, T = 650 N
Frequency for the first harmonic = ?
we know,

μ is the mass per unit length
μ = 0.325 x 10⁻³/ 0.577
μ = 0.563 x 10⁻³ Kg/m
now,

v = 1074.49 m/s
The wire is fixed at both ends. Nodes occur at fixed ends.
For First harmonic when there is a node at each end and the longest possible wavelength will have condition
λ=2 L
λ=2 x 0.577 = 1.154 m
we now,
v = f λ


f = 931.1 Hz
The frequency for first harmonic is equal to f = 931.1 Hz
Answer:
the work converted to thermal energy is 40 J.
Explanation:
Given;
work done by the physicist,w = 100 J
height through which the book is raised, h = 0.2 m
efficiency of machine = 60% = 0.6
The useful work done by the machine is calculated as;
useful work = 0.6 x 100 = 60 J
The wasted energy = 100 J - 60 J
The wasted energy = 40 J
The wasted energy by the machine is possibly converted to thermal energy by the frictional part of the machine.
Therefore, the work converted to thermal energy is 40 J.