By the law of universal gravitation, the gravitational force <em>F</em> between the satellite (mass <em>m</em>) and planet (mass <em>M</em>) is
<em>F</em> = <em>G</em> <em>M</em> <em>m</em> / <em>R </em>²
where
<em>• G</em> = 6.67 × 10⁻¹¹ m³/(kg•s²) is the universal gravitation constant
• <em>R</em> = 2500 km + 5000 km = 7500 km is the distance between the satellite and the center of the planet
Solve for <em>M</em> :
<em>M</em> = <em>F R</em> ² / (<em>G</em> <em>m</em>)
<em>M</em> = ((3 × 10⁴ N) (75 × 10⁵ m)²) / (<em>G</em> (6 × 10³ kg))
<em>M</em> ≈ 2.8 × 10¹⁴ kg
" This manual applies to Compact Liquid <span>Fuel Pumps & </span>Dispensers<span> The </span>liquid pressure<span> range is from 0.5 - 20m These totals </span>can<span> be displayed by </span>pressing<span> the CLEAR </span>button<span> on the preset keypad five times in When connecting to sites </span>powered<span> by. "</span>
Answer:
The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Explanation:
Given that,
Point charge at origin = 2 nC
Second charge = 5 nC
Distance at x axis = 8 m
We need to calculate the electric field at the point x = 2 m
Using formula of electric field

Put the value into the formula


The direction is toward positive x- axis.
Hence, The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Answer:
The answer is the 1st one