Answer:
it's law
Explanation:
i got it wrong because i put the wrong answer but it was law or c
i hope this help's
Whenever any substance goes under chemical change so any of the reaction will happen either both or multiple compounds will combine to produce combination reaction either one compound will decompose itself into 2 or more compounds or elements and last one is replacement reaction the either reaction is not even going to combination nor decomposition, So when a reaction like that happens it must replacement reaction.
Now the question is what's the condition required for it, so basically a chemical reaction when takes place it depends upon several factor on the basis of which we conclude products. The factors are Temperature,catalyst,reagents, either what is the mechanism of reaction, stability of reactants and stability of products and alot more.
During reaction sometimes gas forms and sometimes not yea and well that also depends on the chemical reactivity and stability of product sometimes product found itself most stable releasing the gas evolving so it's been done itself and sometimes we add catalyst and adjust the reaction to extract that gas and get desirable product manually.
I wrote all i know if sorry if this is not what you're looking for :(
I think Kinetic energy forms <em>Motion energy </em>and Potential energy forms <em>Gravitational Potential energy.</em>
Answer:
a. 7.8*10¹⁴ He⁺⁺ nuclei/s
b. 4000s
c. 7.7*10⁸s
Explanation:
I = 0.250mA = 2.5 * 10⁻³A
Q = 1.0C
1 e- contains 1.60 * 10⁻¹⁹C
But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C
(A).
No. Of charge per second = current passing through / charge
1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C
1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei
(B).
I = Q / t
From this equation, we can determine the time it takes to transfer 1.0C
I = 1.0 / 2.5*10⁻⁴ = 4000s
(C).
Time it takes for 1 mol of He⁺⁺ to strike the target =?
Using Avogadro's ratio,
1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)
Note : ions cancel out leaving the value of the answer in mols.
1.0 mol of He = 7.7 * 10⁸s
Lifting the backpack off the floor. Force is being applied in only one direction then (up) which is what constitutes as work. Carrying the box of crayons applies force in two directions (up and forward), which cancel each other out. Work has a vector, which is a quantity containing both direction and magnitude (one, finite direction, not two).