Less, if it’s too big: hard to control and maneuverability for shooting wouldn’t be that good. a smaller wheelchair allows for faster movement and control, along with easier shooting and upper body movement
Answer:
The power developed in HP is 2702.7hp
Explanation:
Given details.
P1 = 150 lbf/in^2,
T1 = 1400°R
P2 = 14.8 lbf/in^2,
T2 = 700°R
Mass flow rate m1 = m2 = m = 11 lb/s Q = -65000 Btu/h
Using air table to obtain the values for h1 and h2 at T1 and T2
h1 at T1 = 1400°R = 342.9 Btu/h
h2 at T2 = 700°R = 167.6 Btu/h
Using;
Q - W + m(h1) - m(h2) = 0
W = Q - m (h2 -h1)
W = (-65000 Btu/h ) - 11 lb/s (167.6 - 342.9) Btu/h
W = (-65000 Btu/h ) - (-1928.3) Btu/s
W = (-65000 Btu/h ) * {1hr/(60*60)s} - (-1928.3) Btu/s
W = -18.06Btu/s + 1928.3 Btu/s
W = 1910.24Btu/s
Note; Btu/s = 1.4148532hp
W = 2702.7hp
A. Email your teacher right away. It would be the safest option.
Answer:
a) The mechanical force is -226.2 N
b) Using the coenergy the mechanical force is -226.2 N
Explanation:
a) Energy of the system:



If i = 2A and g = 10 cm


b) Using the coenergy of the system:

Answer:
Force magnitude = 296.7 N
Explanation:
Detailed illustration is given in the attached document.