1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
3 years ago
11

A 179 ‑turn circular coil of radius 3.95 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicu

lar to the plane of the coil. The coil is connected to a 10.1 Ω resistor to create a closed circuit. During a time interval of 0.163 s, the magnetic field strength decreases uniformly from 0.573 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval.
Engineering
1 answer:
suter [353]3 years ago
6 0

Answer:

The energy, that is dissipated in the resistor during this time interval is 153.6 mJ

Explanation:

Given;

number of turns, N = 179

radius of the circular coil, r = 3.95 cm = 0.0395 m

resistance, R = 10.1 Ω

time, t = 0.163 s

magnetic field strength, B = 0.573 T

Induced emf is given as;

emf= N\frac{d \phi}{dt}

where;

ΔФ is change in magnetic flux

ΔФ  = BA = B x πr²

ΔФ  = 0.573 x π(0.0395)² = 0.002809 T.m²

emf = N\frac{d \phi}{dt} = 179(\frac{0.002809}{0.163} ) = 3.0848 \ V

According to ohm's law;

V = IR

I = V / R

I = 3.0848 / 10.1

I = 0.3054 A

Energy = I²Rt

Energy = (0.3054)² x 10.1 x 0.163

Energy = 0.1536 J

Energy = 153.6 mJ

Therefore, the energy, that is dissipated in the resistor during this time interval is 153.6 mJ

You might be interested in
The part of a circuit that carries the flow of electrons is referred to as the?
Oksanka [162]

Answer:

  Conductor

Explanation:

Current is carried by a conductor.

__

The purpose of a dielectric and/or insulator is to prevent current flow. An electrostatic field may set up the conditions for current flow, but it carries no current itself.

7 0
3 years ago
computer language C++ (Connect 4 game)( this is all the info that was givin no input or solution) I used the most recent version
Mariana [72]

Answer:

C++ code explained below

Explanation:

#include "hw6.h"

//---------------------------------------------------

// Constructor function

//---------------------------------------------------

Connect4::Connect4()

{

ClearBoard();

}

//---------------------------------------------------

// Destructor function

//---------------------------------------------------

Connect4::~Connect4()

{

// Intentionally empty

}

//---------------------------------------------------

// Clear the Connect4 board

//---------------------------------------------------

void Connect4::ClearBoard()

{

// Initialize Connect4 board

for (int c = 0; c < COLS; c++)

for (int r = 0; r < ROWS; r++)

board[r][c] = ' ';

// Initialize column counters

for (int c = 0; c < COLS; c++)

count[c] = 0;

}

//---------------------------------------------------

// Add player's piece to specified column in board

//---------------------------------------------------

bool Connect4::MakeMove(int col, char player)

{

// Error checking

if ((col < 0) || (col >= COLS) || (count[col] >= ROWS))

return false;

// Make move

int row = count[col];

board[row][col] = player;

count[col]++;

return true;

}

//---------------------------------------------------

// Check to see if player has won the game

//---------------------------------------------------

bool Connect4::CheckWin(char player)

{

// Loop over all starting positions

for (int c = 0; c < COLS; c++)

for (int r = 0; r < ROWS; r++)

if (board[r][c] == player)

{

// Check row

int count = 0;

for (int d = 0; d < WIN; d++)

if ((r+d < ROWS) &&

(board[r+d][c] == player)) count++;

if (count == WIN) return true;

 

// Check column

count = 0;

for (int d = 0; d < WIN; d++)

if ((c+d < COLS) &&

(board[r][c+d] == player)) count++;

if (count == WIN) return true;

 

// Check first diagonal

count = 0;

for (int d = 0; d < WIN; d++)

if ((r+d < ROWS) && (c+d < COLS) &&

(board[r+d][c+d] == player)) count++;

if (count == WIN) return true;

 

// Check second diagonal

count = 0;

for (int d = 0; d < WIN; d++)

if ((r-d >= 0) && (c+d < COLS) &&

(board[r-d][c+d] == player)) count++;

if (count == WIN) return true;

}

return false;

}

//---------------------------------------------------

// Print the Connect4 board

//---------------------------------------------------

void Connect4::PrintBoard()

{

// Print the Connect4 board

for (int r = ROWS-1; r >= 0; r--)

{

// Draw dashed line

cout << "+";

for (int c = 0; c < COLS; c++)

cout << "---+";

cout << "\n";

// Draw board contents

cout << "| ";

for (int c = 0; c < COLS; c++)

cout << board[r][c] << " | ";

cout << "\n";

}

// Draw dashed line

cout << "+";

for (int c = 0; c < COLS; c++)

cout << "---+";

cout << "\n";

// Draw column numbers

cout << " ";

for (int c = 0; c < COLS; c++)

cout << c << " ";

cout << "\n\n";

}

//---------------------------------------------------

// Main program to play Connect4 game

//---------------------------------------------------

int main()

{

  int choice;

  int counter = 0;

  srand (time(NULL));

  Connect4 board;

  cout << "Welcome to Connect 4!" << endl << "Your Pieces will be labeled 'H' for human. While the computer's will be labeled 'C'" << endl;

  board.PrintBoard();

  cout << "Where would you like to make your first move? (0-6)";

  cin >> choice;

  while (board.MakeMove(choice,'H') == false){

  cin >> choice;

  }

  counter++;

  while (board.CheckWin('C') == false && board.CheckWin('H') == false && counter != 21){

  while (board.MakeMove(rand() % 7, 'C') == false){}

  board.PrintBoard();

  cout << "Where would you like to make your next move?" << endl;

  cin >> choice;

  board.MakeMove(choice,'H');

  while (board.MakeMove(choice,'H') == false){

  cin >> choice;

  }

  counter++;

  }

 

  if (board.CheckWin('C')){

  cout << "Computer Wins!" << endl;}

  else if (counter == 21){cout << "Tie Game!" << endl;}

  else {cout << "Human Wins!" << endl;}

  board.PrintBoard();

}

4 0
3 years ago
Consider this example of a recurrence relation. A police officer needs to patrol a gated community. He would like to enter the g
SashulF [63]

Answer:

the police officer cruise each streets precisely once and he enters and exit with the same gate.

Explanation:

NB: kindly check below for the attached picture.

The term ''Euler circuit'' can simply be defined as the graph that shows the edge of K once in a finite way by starting and putting a stop to it at the same vertex.

The term "Hamiltonian Circuit" is also known as the Hamiltonian cycle which is all about a one time visit to the vertex.

Here in this question, the door is the vertex and the road is the edge.

The information needed to detemine a Euler circuit and a Hamilton circuit is;

"the police officer cruise each streets precisely once and he enters and exit with the same gate."

Check attachment for each type of circuit and the differences.

7 0
3 years ago
After replacing a vacuum booster, the brakes lock up on a road test. Technician A says there is air trapped inside the brake lin
vitfil [10]

Answer:

Technician B

Explanation:

The brakes can lockup due to the following reasons

1) Overheating break systems

2) Use of wrong brake fluid

3) Broken or damaged drum brake backing plates, rotors, or calipers

4) A defective ABS part, or a defective parking mechanism or proportioning valve

5) Brake wheel cylinders, worn off

6) Misaligned power brake booster component

5 0
3 years ago
A piston-cylinder device contains 0.1 m3 of liquid water and 0.9 m² of water vapor in equilibrium at 800 kPa. Heat is transferre
docker41 [41]

Answer:

Initial temperature = 170. 414 °C

Total mass = 94.478 Kg

Final volumen = 33.1181 m^3

Diagram  = see picture.

Explanation:

We can consider this system as a close system, because there is not information about any output or input of water, so the mass in the system is constant.  

The information tells us that the system is in equilibrium with two phases: liquid and steam. When a system is a two phases region (equilibrium) the temperature and pressure keep constant until the change is completed (either condensation or evaporation). Since we know that we are in a two-phase region and we know the pressure of the system, we can check the thermodynamics tables to know the temperature, because there is a unique temperature in which with this pressure (800 kPa) the system can be in two-phases region (reach the equilibrium condition).  

For water in equilibrium at 800 kPa the temperature of saturation is 170.414 °C which is the initial temperature of the system.  

to calculate the total mass of the system, we need to estimate the mass of steam and liquid water and add them. To get these values we use the specific volume for both, liquid and steam for the initial condition. We can get them from the thermodynamics tables.

For the condition of 800 kPa and 170.414 °C using the thermodynamics tables we get:

Vg (Specific Volume of Saturated Steam) = 0.240328 m^3/kg

Vf (Specific Volume of Saturated Liquid) = 0.00111479 m^3/kg

if you divide the volume of liquid and steam provided in the statement by the specific volume of saturated liquid and steam, we can obtain the value of mass of vapor and liquid in the system.

Steam mass = *0.9 m^3 / 0.240328 m^3/kg = 3.74488 Kg

Liquid mass = 0.1 m^3 /0.00111479 m^3/kg = 89.70299 Kg  

Total mass of the system = 3.74488 Kg + 89.70299 Kg = 93,4478 Kg

If we keep the pressure constant increasing the temperature the system will experience a phase-change (see the diagram) going from two-phase region to superheated steam. When we check for properties for the condition of P= 800 kPa and T= 350°C we see that is in the region of superheated steam, so we don’t have liquid water in this condition.  

If we want to get the final volume of the water (steam) in the system, we need to get the specific volume for this condition from the thermodynamics tables.  

Specific Volume of Superheated Steam at 800 kPa and 350°C = 0.354411 m^3/kg

We already know that this a close system so the mass in it keeps constant during the process.

 

If we multiply the mass of the system by the specific volume in the final condition, we can get the final volume for the system.  

Final volume = 93.4478 Kg * 0.354411 m^3/kg = 33.1189 m^3

You can the P-v diagram for this system in the picture.  

For the initial condition you can calculate the quality of the steam (measure of the proportion of steam on the mixture) to see how far the point is from for the condition on all the mix is steam. Is a value between 0 and 1, where 0 is saturated liquid and 1 is saturated steam.  

Quality of steam = mass of steam / total mass of the system

Quality of steam = 3.74488 Kg /93.4478 Kg = 0,040 this value is usually present as a percentage so is 4%.  

Since this a low value we can say that we are very close the saturated liquid point in the diagram.  

6 0
3 years ago
Other questions:
  • The elevation of the end of the steel beam supported by a concrete floor is adjusted by means of the steel wedges E and F. The b
    12·2 answers
  • Oil with a specific gravity of 0.72 is used as the indicating fluid in a manometer. If the differential pressure across the ends
    6·1 answer
  • If you know that the change in entropy of a system where heat was added is 12 J/K, and that the temperature of the system is 250
    10·1 answer
  • Drag each tile to the correct box.
    15·1 answer
  • Note that common skills are listed toward the top, and less common skills are listed toward the bottom.
    14·1 answer
  • Early American rockets used an RC circuit to set the time for the rocket to begin re-entry after launch (true story). Assume the
    5·1 answer
  • Part A - Transmitted power A solid circular rod is used to transmit power from a motor to a machine. The diameter of the rod is
    8·1 answer
  • A gas turbine receives a mixture having the following molar analysis: 10% CO2, 19% H2O, 71% N2 at 720 K, 0.35 MPa and a volumetr
    5·1 answer
  • Technician A says that the carpet padding is designed to help reduce noise and vibrations.
    5·1 answer
  • 3. (5%) you would like to physically separate different materials in a scrap recycling plant. describe at least one method that
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!