Answer:) The correct answer is B. at the end of the fuel rail.
2) The one who is correct is the Technician A.
Explanation:
74 cycles it’s what u need
Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
I’m crying looking at that.
Answer:

Explanation:
We have to combine the following formula to find the mass yield:


The diffusion coefficient : 
The area : 
Time : 
ΔC: 
Δx: 
Now substitute the values

![M=-(6.0*10^{-8} m/s^{2})(0.25 m^{2})(3600 s/h)[(0.64-3.0kg/m^{3})(3.1*10^{-3}m)]](https://tex.z-dn.net/?f=M%3D-%286.0%2A10%5E%7B-8%7D%20m%2Fs%5E%7B2%7D%29%280.25%20m%5E%7B2%7D%29%283600%20s%2Fh%29%5B%280.64-3.0kg%2Fm%5E%7B3%7D%29%283.1%2A10%5E%7B-3%7Dm%29%5D)
