Answer:

Explanation:
M = Mass of Earth
G = Gravitational constant
R = Radius of Earth
The acceleration due to gravity on Earth is

On new planet

Dividing the two equations we get

The acceleration due to gravity on the other planet is 
Answer:
What is it called when the right side of a design is reflected across a central axis and mirrored on the left side of the design?
Answer:
<em>The force required is 3,104 N</em>
Explanation:
<u>Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = ma
Where a is the acceleration of the object.
On the other hand, the equations of the Kinematics describe the motion of the object by the equation:

Where:
vf is the final speed
vo is the initial speed
a is the acceleration
t is the time
Solving for a:

We are given the initial speed as vo=20.4 m/s, the final speed as vf=0 (at rest), and the time taken to stop the car as t=7.4 s. The acceleration is:


The acceleration is negative because the car is braking (losing speed). Now compute the force exerted on the car of mass m=1,126 kg:

F= 3,104 N
The force required is 3,104 N
A transmitter “encodes” or modulates messages by varying the amplitude or frequency of the wave – a bit like Morse code. At the other, a receiver tuned to the same wavelength picks up the signal and 'decodes' it back to the desired form
I think it’s A or D