Answer:
b. 1.1 m
Explanation:
It is given that the total distance between the masses is equal to the length of the board, which is 3 m. Therefore,

where,
s₁ = distance of fulcrum from left mass
s₂ = distance of fulcrum from right mass
In order to achieve balance, the torque due to both masses must be equal:

s₁ = 1.1 m
Hence, the correct option is:
<u>b. 1.1 m</u>
F = 130 revs/min = 130/60 revs/s = 13/6 revs/s
t = 31s
wi = 2πf = 2π × 13/6 = 13π/3 rads/s
wf = 0 rads/s = wi + at
a = -wi/t = -13π/3 × 1/31 = -13π/93 rads/s²
wf² - wi² = 2a∅
-169π²/9 rads²/s² = 2 × -13π/93 rads/s² × ∅
∅ = 1209π/18 rads
n = ∅/2π = (1209π/18)/(2π) = 1209/36 ≈ 33.5833 revolutions.
I just woke him crying crying laughing crying and laughing I’m so mad he got me blocked him lol I got a hold on her phone the answer is 0 m
The formula that links voltage (V), resistance (R) and current intensity (I) is

Solve this formula for I to get

Plug your values for V and R and you'll get the current.
Answer: 2.55meter
Explanation: Using the second equation of motion.
S{hieght} = U*t + {g*t²}/2
Where U is initial velocity =0m/s
g is acceleration due to gravity 10m/s²
t is time 1secs
So we have,
hieght = 0 + {g*t²}/2
hieght = {10*(1)²}/2
Total hieght travelled is 10/2
Which is 5 meter.
But we are asked to find the hieght above the window which as a hieght of 2.45meter.
So,
hieght above window would be
{5 - 2.45}meter
Which is 2.55 meter.