Answer:
speed = 65.7 km/h
Explanation:
speed = distance over time, so you'd do 460 km/7 hrs to get your speed in km/h
Answer:
0.358Kg
Explanation:
The potential energy in the spring at full compression = the initial kinetic energy of the bullet/block system
0.5Ke^2 = 0.5Mv^2
0.5(205)(0.35)^2 = 12.56 J = 0.5(M + 0.0115)v^2
Using conservation of momentum between the bullet and the block
0.0115(265) = (M + 0.0115)v
3.0475 = (M + 0.0115)v
v = 3.0475/(M + 0.0115)
plugging into Energy equation
12.56 = 0.5(M + 0.0115)(3.0475)^2/(M + 0.0115)^2
12.56 = 0.5 × 3.0475^2 / ( M + 0.0115 )
12.56 = 0.5 × 9.2872/ M + 0.0115
12.56 = 4.6436/ M + 0.0115
12.56 ( M + 0.0115 ) = 4.6436
12.56M + 0.1444 = 4.6436
12.56M = 4.6436 - 0.1444
12.56 M = 4.4992
M = 4.4992÷12.56
M = 0.358 Kg
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
The answer is: [C]: "elasticity" .
________________________________________