Answer:
low amplitude hope it will help you
Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process
Answer:
c is the one that makes the most sense
Explanation:
Electromagnetic waves need no matter to travel - they can travel through empty space (a vacuum). In a vacuum, all electromagnetic waves travel at approximately 3 x 108 m/s - which is the fastest speed possible. ...
Light traveling value through an optical Fibre is, 2 x 108 m/s. Hope that helps.
<h2>Right answer: acceleration due to gravity is always the same </h2><h2 />
According to the experiments done and currently verified, in vacuum (this means there is not air or any fluid), all objects in free fall experience the same acceleration, which is <u>the acceleration of gravity</u>.
Now, in this case we are on Earth, so the gravity value is
Note the objects experience the acceleration of gravity regardless of their mass.
Nevertheless, on Earth we have air, hence <u>air resistance</u>, so the afirmation <em>"Free fall is a situation in which the only force acting upon an object is gravity" </em>is not completely true on Earth, unless the following condition is fulfiled:
If the air resistance is <u>too small</u> that we can approximate it to <u>zero</u> in the calculations, then in free fall the objects will accelerate downwards at
and hit the ground at approximately the same time.