A man inside an insulated metallic cage does not receive shock when the cage is highly charged because the whole charge reside on outer surface of the cage.
If the cage was a non-conductive cage, then the current cannot pass through the cage so it cannot affect the person in the cage.
For example- If you are seated in a car (metal body) and the car is hit with lightning, it is very unlikely that the person in the car would be hit with the lightning.
First, let's calculate the total mechanical energy when the block is at rest and the spring is compressed 5 cm:

Now, let's use this total energy to calculate the velocity when the spring is compressed by 2.5 cm:

Therefore the speed is 1.026 m/s.
First, we need to convert the pressure in SI units. Keeping in mind that

:

The initial and final volume of the gas are (keeping in mind that

):


So, the work done on the gas by the surrounding is

And the final positive sign means that this work corresponds to an increase in internal energy of the gas.
The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of
increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
(a): The car's relative position to the base of the cliff is x= 32.52m.
(b): The lenght of the car in the ir is tfall= 1.78 sec.
Explanation:
Vo= 0
V= ?
d= 50m
h= 30m
a= 4 m/s²
t= √(2*d/a)
t= 5 sec
V= a*t
V= 20 m/s
Vx= V * cos(24º)
Vx= 18.27 m/s
Vy= V* sin(24º)
Vy= 8.13 m/s
h= Vy*t + g*t²/2
clearing t:
tfall= 1.78 sec (b)
x= Vx * tfall
x= 32.52 m (a)