d = distance = 0.76 m <span>
<span>a = acceleration due to gravity = 9.81 m/s^2</span>
u = initial velocity = 0 (as the ball rolls off the table the
vertical velocity = 0
t = time = missing so we need to solve it
So we use the equation d = ut + 1/2 at², and ever since u is
zero, ut is zero and the equation becomes to d = 1/2 at² and this reorders to t
= sqrt (2d/a) = 0.39 seconds.
Since there are no forces performing in the horizontal
direction, this means that there is no acceleration in the horizontal direction
and consequently the horizontal velocity is persistent. </span>
Velocity = distance/
time.
Horizontal velocity is
therefore horizontal distance/time = 0.61 m/0.39s = 1.56 m/s.
<span> </span>
Answer:
396.97°C
Explanation:
Charles' Law explains that at constant volume, the pressure of an ideal gas is directly proportional to its temperature (in Kelvin).
P₁ ∝ T₁
P₁ = kT₁
k = constant of proportionality
(P₁/T₁) = (P₂/T₂)
P₁ = 240.0 kPa
T₁ = Boiling point of water = 100°C = 373.15 K
P₂ = 431.0 kPa
T₂ = ?
(240/373.15) = (431/T₂)
T₂ = (431 × 373.15) ÷ 240
T₂ = 670.12 K
T₂ = 396.97°C
Hope this Helps!!!
D. The flow of energy,heat, and work
Answer:
Las propiedades físicas, como la dureza y el punto de ebullición, y los cambios físicos, como la fusión o la congelación, no implican un cambio en la composición de la materia.
Explanation:Creo que es correcta