Answer:
v = 5.24[m/s]
Explanation:
Este problema se puede resolver por medio del principio de la conservación de la energía, donde la energía potencial es igual a la energía cinética. Es decir a medida que el carrito desciende su energía potencial disminuye, pero su energía cinética aumenta.

Donde:

Ahora reemplazando:
![\frac{1}{2} *m*v^{2}=m*g*h\\\\0.5*v^{2}=9.81*1.4\\v=\sqrt{\frac{9.81*1.4}{0.5} } \\\\v=5.24[m/s]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%3Dm%2Ag%2Ah%5C%5C%5C%5C0.5%2Av%5E%7B2%7D%3D9.81%2A1.4%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B9.81%2A1.4%7D%7B0.5%7D%20%7D%20%20%20%5C%5C%5C%5Cv%3D5.24%5Bm%2Fs%5D)
Image formed by a plane mirror is always virtual which means that the light rays do not actually come from the image but upright and these of the same shape and size are the object it is<span> reflecting.</span>
6.022*10^23 atoms/mole of reactant
(this is chemistry not physics)
Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x
Answer:
The answer is time
Explanation:
So when youre given force and distance, you can determine work done
Work Done = Force × Distance travelled in the
direction of the force
Since Power = Work Done/ Time
when you know work done, and you want to find power, you will need time.
Because you have work done already, you dont need energy. Though you can use energy and time to find work too. The alternative formula for Power would be:
Power = Energy Converted/Time