The 'strength' of the electric field is the force on 1C of charge at that point.
At this 'certain location', the field is 40/5 = 8 newtons per coulomb = <u>8 volts</u>
The total quantity of electrons that have flowed through a circuit is a
quantity of charge, measured in Coulombs, or in Ampere-seconds.
The <em><u>rate</u></em> of flow of electrons, or more accurately the rate of flow of
the charge on them, is electrical current. Its unit is the Ampere.
1 Ampere is 1 Coulomb of charge per second.
Answer:
If I double the current in the inductor, the new total energy will become 4E (option f).
Explanation:
The coil or inductor is a passive component made of an insulated wire that stores energy in the form of a magnetic field due to its form of coiled turns of wire, through a phenomenon called self-induction. In other words, inductors store energy in the form of a magnetic field. The energy stored in the space where there is a magnetic field in the inductor is:

where E is Energy [J], L is Inductance [H] and I is Current [A].
If you double the current in the inductor, then the new value of the current is I'= 2*I. So replacing the new total energy is:

Then:

<em><u>If I double the current in the inductor, the new total energy will become 4E (option f).</u></em>
Answer:
1. the force which can be felt or act only when two objects are in contact is known as contact force.
for example: frictional force, muscular force,
tension, air resistance .
2. the force which can be felt or act even when two objects are in contact or not is known as non-contact force.
for example: magnetic force, gravitational force, electrostatic force.
Below are the choices that can be found elsewhere:
a. 268 kJ
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have:
<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>
<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>
<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>
<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>
<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>
<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>