Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms
-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole = 
= 
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
= 
x = 
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.
you’re made partly of carbon so is clothes, furniture, plastics, yr household machines
I think Kinetic energy forms <em>Motion energy </em>and Potential energy forms <em>Gravitational Potential energy.</em>
Answer:
22.27 °C = ΔT
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m × c × ΔT
Given data:
mass = 28 g
heat absorbed = 58 cal
specific heat of copper = 0.093 cal/g .°C
temperature change =ΔT= ?
Solution:
Q = m × c × ΔT
58 cal = 28 g × 0.093 cal /g.°C × ΔT
58 cal = 2.604 cal.°C × ΔT
58 cal / 2.604 cal .°C = ΔT
22.27 °C = ΔT