Weight = (mass) x (gravity)
70 N = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²) , and you have
mass = 70 N / 9.8 m/s² = 7.14 kg.
___________________________
Mass on the moon:
Mass doesn't change. It's a number that belongs to the bowling ball,
no matter where the ball goes. If the mass of the bowling ball is 7.14 kg
anywhere, then it's 7.14 kg everywhere ... on Earth, on the moon, on Mars, rolling around in the trunk of my car, or floating in intergalactic space.
However, WEIGHT depends on the gravity wherever the ball happens to be
at the moment.
The acceleration of gravity on the moon is 1.622 m/s².
So the WEIGHT of the ball on the moon is
(7.14 kg) x (1.622 m/s²) = 11.58 Newtons
That's only about 16% of its weight on Earth.
In evolution, there are different types of evolution. There is micro evolution and macro evolution. Macro-evolution results in a brand new species. Sometimes, species get separated and evolve in different ways. Sometimes, through macro-evolution 1 of those groups of the same species, become a completely different species. I think that is what is happening here.
To convert parametric to Cartesian systems, you need to find a way to get rid of the t's.
In this case, the t's are inside trigonometric functions, so we're going to use a very famous trig identity you should memorize:

If we plug sin(t) and cos(t) into that equation only x and y variables will be left!
BUT there's one thing. The given cos(t + pi/6) has nasty extra stuff in it. However, part a gives you a tip on how to relate x and y to a nice clean cos(t)
So if we do a little rearranging:

Now we can plug these into the famous trig identity!

Do a little bit of adjustments to get that final form asked for, and you'll be able to find those integers of a and b. ;)
Answer:
The change in the internal energy of the gas 1,595 J
Explanation:
The first law of thermodynamics establishes that in an isolated system energy is neither created nor destroyed, but undergoes transformations; If mechanical work is applied to a system, its internal energy varies; If the system is not isolated, part of the energy is transformed into heat that can leave or enter the system; and finally an isolated system is an adiabatic system (heat can neither enter nor exit, so no heat transfer takes place.)
This is summarized in the expression:
ΔU= Q - W
where the heat absorbed and the work done by the system on the environment are considered positive.
Taking these considerations into account, in this case:
- Q= 500 cal= 2,092 J (being 1 cal=4.184 J)
Replacing:
ΔU= 2,092 J - 500 J
ΔU= 1,592 J whose closest answer is 1,595 J
<u><em>The change in the internal energy of the gas 1,595 J
</em></u>
Answer:

Explanation:
Multiply right stide by "EFG", left side will be only ABCD. Then devide right side by "ABC", leaving left side as just D. Cancel out numbers both in numerator and denominator of right