Explanation:
Below is an attachment containing the solution.
Answer:
<h2>
a) Q = 0.759µC</h2><h2>
b) E = 39.5µJ</h2>
Explanation:
a) The charge Q on the positive charge capacitor can be gotten using the formula Q = CV
C = capacitance of the capacitor (in Farads )
V = voltage (in volts) = 100V
C = ∈A/d
∈ = permittivity of free space = 8.85 × 10^-12 F/m
A = cross sectional area = 600 cm²
d= distance between the plates = 0.7cm
C = 8.85 × 10^-12 * 600/0.7
C = 7.59*10^-9Farads
Q = 7.59*10^-9 * 100
Q = 7.59*10^-7Coulombs
Q = 0.759*10^-6C
Q = 0.759µC
b) Energy stored in a capacitor is expressed as E = 1/2CV²
E = 1/2 * 7.59*10^-9 * 100²
E = 0.0000395Joules
E = 39.5*10^-6Joules
E = 39.5µJ
Answer:

Explanation:
Given that there are two force of 1 pound each at right angles to each other.
The from the vector law of addition:

where:
resultant force
be the two of the forces to be added.


Answer:
Friction is a force that holds back the movement of a sliding object.
Explanation:
The two types of friction: Static friction and Kinetic friction. Static friction operates between two surfaces that aren't moving relative to each other, while kinetic friction acts between objects in motion.
The gravitational force between the Earth and the satellite (its "weight") is inversely proportional to the distance between the centers of both objects.
On the surface, their centers are separated by 1 Earth radius.
12,000 miles above the surface, they're separated by 4 Earth radiii.
(4/1) = 4
So after the move, the satellite's weight is (1/4²) = 1/16 of its surface weight.
(321 lb) / (16) = (20 and a hair) lb
The correct choice from the given list is " <em>>20 lb "</em> .