Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
A wagon is pulled at an angle of 30 degrees to the horizontal.
<u>Answer</u>
3 Ohms
<u>Explanation</u>
when the resistors are in series, the resistance in the circuit increases. For example, if two resistors, R1 and R2 are in series, the combined resistance is R1+R2.
When connected in parallel, the total resistance is the reciprocal of (1/R1 + 1/R2)
In this case the resistors are in parallel.
Total resistance = (1/12 + 1/4)⁻¹
= (1/3)⁻¹
= 3 Ohms
Answer:
Explanation:
3.4 m/s due North, -1.1 m/s due East