Answer:
Explanation:
An inelastic collision is one where 2 masses collide and stick together, moving as a single mass after the collision occurs. When we talk about this type of momentum conservation, the momentum is conserved always, but the kinetic momentum is not (the velocity changes when they collide). Because there is direction involved here, we use vector addition. The picture before the collision has the truck at a mass of 3520 kg moving north at a velocity of 18.5. The truck's momentum, then, is 3520(18.5) = 65100 kgm/s; coming at this truck is a car of mass 1480 kg traveling east at an unknown velocity. The car's momentum, then, is 1480v. The resulting vector (found when you pick up the car vector and stick the initial end of it to the terminal end of the truck's momentum vector) forms the hypotenuse of a right triangle where one leg is 65100 kgm/s, and the other leg is 1480v. Since we already know the final velocity of the 2 masses after the collision, we can use that to find the final momentum, which will serve as the resultant momentum vector in our equation (we'll get there in a sec). The final momentum of this collision is
p = mv and
p = (3520 + 1480)(13.6) so
p = 68000. Final momentum. The equation for this is a take-off of Pythagorean's Theorem and the one used to find the final magnitude of a resultant vector when you first began your vector math in physics. The equation is
which, in words, is
the final momentum after the collision is equal to the square root of the truck's momentum squared plus the car's momentum squared. Filling in:
and
and
and
and
so
v = 13.3 m/s at 72.6°
The Rorschach inkblots and the TAT (Thematic Appreciation Test) both rely on providing the subject with ambiguous visual stimuli and assessing the subject's state of mind using the subject's interpretation of the stimuli.
Both use cards, although not all of the cards are used in the TAT. Moreover, the TAT cards contain sketches, while the Rorschach inkblots contain patterns of ink.
If an object is thrown in an upward direction from the top of a building 1.60 x 102 ft. high at an initial velocity of 21.82 mi/h, what is its final velocity when it hits the ground? (Disregard wind resistance. Round answer to nearest whole number and do not reflect negative direction in your answer.)
this question is troubling me i guessed 96 ft/s
can someone help me out and explain it thanks so much!!!!!!