Answer:
A. 69.9m
Explanation:
Given parameters:
Initial velocity = 10.5m/s
Final velocity = 21.7m/s
Time = 4.34s
Unknown:
Distance traveled = ?
Solution:
Let us first find the acceleration of the car;
Acceleration =
v is final velocity
u is initial velocity
t is the time
Acceleration =
= 2.58m/s²
Distance traveled;
V² = U² + 2aS
21.7² = 10.5² + 2 x 2.58 x S
360.64 = 2 x 2.58 x S
S = 69.9m
Answer:
44.64 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²


<u>Time taken to reach 1180 m is 11.29 seconds</u>

<u>Time the rocket will keep going up after the engines shut off is 13.06 seconds.</u>

The distance the rocket will keep going up after the engines shut off is 836.05 m
Total distance traveled by the rocket in the upward direction is 1180+836.05 = 2016.05 m
The rocket will fall from this height

<u>Time taken by the rocket to fall from maximum height is 20.29 seconds</u>
Time the rocket will stay in the air is 11.29+13.06+20.29 = 44.64 seconds
Answer:
Yes, the velocity of the object can reverse direction when its acceleration is constant. For example consider that the velocity of any object at any time t is given as: ... At At t = 0 sec, the magnitude of velocity is 2m/s and is moving in the forward direction i.e.v (t) = -2.
Use a scale and record the weight in cm^3
Answer:
An asteroid is a minor planet of the inner Solar System. Historically, these terms have been applied to any astronomical object orbiting the Sun.