1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
3 years ago
9

A fuel pump sends gasoline from a car's fuel tank to the engine at a rate of 5.64 10-2 kg/s. the density of the gasoline is 735

kg/m3, and the radius of the fuel line is 3.43 10-3 m. what is the speed at which the gasoline moves through the fuel line?
Physics
2 answers:
Irina18 [472]3 years ago
7 0
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m

Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²

Let v =  speed of pumping the gasoline, m/s
Then the mass flow rate is 
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s

The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s

Answer:  2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
melisa1 [442]3 years ago
3 0

Answer:

The speed is 2.076\frac{m}{s}

Explanation:

We have the data of the gasoline pumping rate.

The gasoline pumping rate indicates the amount of gasoline per unit of time that the fuel pump sends to the car's fuel tank. We indicate the gasoline pumping rate with GPR

GPR=(5.64).10^{-2}\frac{kg}{s}

Its units are \frac{kg}{s} which are units of mass over time(\frac{m}{t})

The density of the gasoline is 735\frac{kg}{m^{3}}

The density is equal to \frac{mass}{volume}=\frac{m}{v}

If we divide the GPR by the density we obtain :

\frac{GPR}{density}=\frac{m/t}{m/v}=\frac{v}{t}=\frac{volume}{time}

Where \frac{v}{t} is the volume flow rate (VFR) :

VFR=\frac{(5.64).10^{-2}\frac{kg}{s}}{735\frac{kg}{m^{3}}}=(7.6735).10^{-5}\frac{m^{3}}{s}

The VFR is equal to area per speed.

VFR=(area).(speed)=A.S

The area (A) is equal to \pi.R^{2} given that the fuel line is circular.

A=\pi.R^{2}=\pi.[(3.43).10^{-3}m]^{2}=(3.6960).10^{-5}m^{2}

Now we have the VFR and A. The final step is to calculate the speed (S) :

VFR=A.S

S=\frac{VFR}{A}

S=\frac{(7.6735).10^{-5}\frac{m^{3}}{s}}{(3.6960).10^{-5}m^{2}}=2.076\frac{m}{s}

The speed of the gasoline is 2.076\frac{m}{s}

You might be interested in
What mass of silver (in grams) is solidified when 749 joules of heat are released by a sample of molten silver at its freezing p
Anastasy [175]

heat released Q = 749 joules

heat of fusion of silver L = 109 J/g

Here phase of silver is changing from liquid to solid

so temperature will remain same

all heat will be released due to its phase change

and in this case we use Q=mL

where m is the mass of silver in gram

Q= mL

749 = m * 109

m = 749/109

m = 6.87 gram

4 0
3 years ago
Read 2 more answers
What crop is least likely to do well when the temperatures are very hot?
torisob [31]

a. Sweet corn and possibly d. okra.

3 0
3 years ago
The human body is a system of systems that rely on each other to sustain a life. Explain how.
Misha Larkins [42]
The human body is connected in every way. All the organs are connected and help each other be alive. For example, the veins are connected to the heart, which help it by pumping blood and oxygen. If they weren’t there, the heart wouldn’t be able to sustain a life.
I really hope this gave you and ideas and helped you in some way:)
4 0
3 years ago
a liquid reactant is pumped through a horizontal, cylindrical, catalytic bed. The catalyst particles are spherical, 2mm in diame
natulia [17]

Answer:

The upper limit on the flow rate = 39.46 ft³/hr

Explanation:

Using Ergun Equation to calculate the pressure drop across packed bed;

we have:

\frac{\delta P}{L}= \frac{150 \mu_oU(1- \epsilon )^2}{d^2p \epsilon^3} + \frac{1.75 \rho U^2(1-\epsilon)}{dp \epsilon^3}

where;

L = length of the bed

\mu = viscosity

U = superficial velocity

\epsilon = void fraction

dp = equivalent spherical diameter of bed material (m)

\rho = liquid density (kg/m³)

However, since U ∝ Q and all parameters are constant ; we can write our equation to be :

ΔP = AQ + BQ²

where;

ΔP = pressure drop

Q = flow rate

Given that:

9.6 = A12 + B12²

Then

12A + 144B = 9.6       --------------   equation (1)

24A + 576B = 24.1    ---------------  equation (2)

Using elimination methos; from equation (1); we first multiply it by 2 and then subtract it from equation 2 afterwards ; So

288 B = 4.9

       B = 0.017014

From equation (1)

12A + 144B  = 9.6

12A + 144(0.017014) = 9.6

12 A = 9.6 - 144(0.017014)

A = \frac{9.6 -144(0.017014}{12}

A = 0.5958

Thus;

ΔP = AQ + BQ²

Given that ΔP = 50 psi

Then

50 = 0.5958 Q + 0.017014 Q²

Dividing by the smallest value and then rearranging to a form of quadratic equation; we have;

Q² + 35.02Q - 2938.8 = 0

Solving the quadratic equation and taking consideration of the positive value for the upper limit of the flow rate ;

Q = 39.46 ft³/hr

3 0
3 years ago
A low resistance light bulb and a high resistance light bulb are connected in parallel with each other. Which bulb is brighter i
sweet [91]
<h2>Answer:</h2>

The bulb with low resistance will be brighter.

<h2>Explanation:</h2>

The brightness of a bulb is a function of both the voltage across the bulb and current flowing through the bulb. The higher the voltage, the higher the current. Hence the brighter the bulb.

Now, according to the question, the bulbs (the high resistance bulb and the low resistance bulb) are connected in parallel with each other. This means that the same voltage passes across them.

Also, we know that according to Ohm's law, the voltage (V) and current (I) through a conductor are related by the following equation;

V =  I x R                -------------------(i)

Where;

R is the resistance of the conductor.

We can re-write equation (i) as follows;

I = V / R               -----------------------(ii)

According to equation (ii), at fixed voltage (V), the current (I) will increase as the resistance (R) decreases.

Now, since the two bulbs have the same voltage, the bulb with the low resistance will allow a larger flow of current than the bulb with high resistance.  Therefore, as said earlier that brightness is dependent on voltage and current, the bulb with the low resistance (and having larger current at some voltage) will be brighter than the bulb with the high resistance (having smaller current at same voltage).

6 0
3 years ago
Other questions:
  • A nurse counts 66 heartbeats in one minute. What is the period of the hearts oscillation? In minutes
    12·1 answer
  • A protostar forms once the nebular cloud condenses and the core begins
    14·2 answers
  • How does a crowbar work?
    11·1 answer
  • Two objects, one of mass m and the other of mass 2m, are dropped from the top of a building. when they hit the ground
    12·1 answer
  • What is a situation when you might travel at a high velocity, but with low acceleration?
    5·2 answers
  • Bob will not develop a good habit if he _____. works out for only one week develops a consistent schedule of exercise works out
    8·1 answer
  • I don't want the answer i just need help on figuring out how to solve this!
    12·1 answer
  • Find the acceleration of a train whose speed increases from 7m/s to 17 m/s in 120s
    15·1 answer
  • Question 15)
    11·1 answer
  • A 3kg book falls from a 2m tall bookshelf what is the speed <br><br> PICTURE included
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!