Momentum, p = m.v
m of the girl = 60.0 kg
m of the boat = 180 kg
v of the girl = 4.0 m/s
A) Momentum of the girl as she is diving:
p = m.v = 60.0 kg * 4.0 m/s = 24.0 N/s
B) momentum of the raft = - momentum of the girl = -24.0 N/s
C) speed of the raft
p = m.v ; v = p/m = 24.0N/s / 180 kg = -0.13 m/s [i.e. in the opposite direction of the girl's velocity]
Answer:
0
Explanation:
m = Mass of person
g = Acceleration due to gravity = 9.81 m/s²
d = Vertical height from the ground
F = Force = Weight = mg
Net work done would be

Hence, the work done on the person by the gravitational force is 0
Answer:
4 m/s
Explanation:
m1 = m2 = m
u1 = 20 m/s, u2 = - 12 m/s
Let the speed of composite body is v after the collision.
Use the conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
m x 20 - m x 12 = (m + m) x v
20 - 12 = 2 v
8 = 2 v
v = 4 m/s
Thus, the speed of teh composite body is 4 m/s.
The conservation of the mass of fluid through two sections (be they A1 and A2) of a conduit (pipe) or current tube establishes that the mass that enters is equal to the mass that exits. Mathematically the input flow must be the same as the output flow,

The definition of flow is given by

Where
V = Velocity
A = Area
The units of the flow of flow are cubic meters per second, that is to say that if there is a continuity, the volume of input must be the same as that of output, what changes if the sections are modified are the proportions of speed.
In this way

