<span>Hello,
The answer is:
A vibrating tuning fork is struck and begins to vibrate as the object used to strike it is placed away from the tuning fork.</span>
The easiest, non-technical way to think about it is like this:
-- A scalar is a quantity that has a size but no direction.
Those include temperature, speed, cost, volume, distance, etc.
One number is all there is to know about it, and there's no way you can
add more of the same stuff to it that would cancel both of them out.
-- A vector is a quantity that has a size and also has a direction.
Those include force, displacement, velocity, acceleration, etc.
It takes more than one number to completely describe one of these.
Also, if you combine two of the same vector quantity in different ways,
you can get different results, and they can even cancel each other out.
Here are some examples. Notice that in each of these examples,
every speed has a direction that goes along with it. This turns the
scalar speed into a vector velocity.
If you're walking inside a bus, and the bus is driving along the road,
then your velocity along the road is the sum of your walking velocity
inside the bus plus the velocity of the bus along the road.
-- If you're walking north up the middle of the bus at 2 miles per hour
and the bus is driving north along the road at 20 miles per hour, then
your velocity along the road is 22 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is driving north along the road at 5 miles per hour, then your
velocity along the road is 3 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is just barely rolling north along the road at 2 miles per hour,
then your velocity along the road is zero.
-- If you're in a big railroad flat-car that's rolling north along the track
at 2 miles per hour, and you walk across the flat-car towards the east
at 2 miles per hour, then your velocity along the ground is 2.818 miles
per hour toward the northeast.
Answer: The hierarchical formation model suggests that galaxies may have been formed by subsequent mergers of smaller galaxies and that today each galaxy houses at least a supermassive black hole.
Explanation: During a fusion of galaxies, the stars that composes it suffer the tidal force, intensifying your action as the galaxies approaching. When two galaxies merges themselves, the astronomers believes that they loss a huge part of their mass, forming the supremassive black hole, that stays in the middle of the galaxie.
The supermassive black holes are originated from the evolution of high mass stars. They were formed by huge clouds of gas or clusters of millions of stars that collapsed on their own gravity when the universe was still much younger and denser.
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
Answer:
I guess the acceleration would be 8 meters a second
Explanation:
I can't think of any other fitting way to put the answer sorry if it's not right