Answer:
Explanation:
Height of building
H = 6m
Horizontal speed of first balloon
U1x = 2m/s
Second ballot is thrown straight downward at a speed of
U2y = 2m/s
Time each gallon hits the ground
Balloon 1.
Using equation of free fall
H = Uoy•t + ½gt²
Uox = 0 since the body does not have vertical component of velocity
6 = ½ × 9.8t²
6 = 4.9t²
t² = 6 / 4.9
t² = 1.224
t = √1.224
t = 1.11 seconds
For second balloon
H = Uoy•t + ½gt²
6 = 2t + ½ × 9.8t²
6 = 2t + 4.9t²
4.9t² + 2t —6 = 0
Using formula method to solve the quadratic equation
Check attachment
From the solution we see that,
t = 0.9211 and t = -1.329
We will discard the negative value of time since time can't be negative here
So the second balloon get to the ground after t ≈ 0.92 seconds
Conclusion
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
D, the lithosphere. (CRUST AND UPPER MANTLE)
Explanation:
A tectonic plate (also called lithospheric plate) is a massive, irregularly shaped slab of solid rock, generally composed of both continental and oceanic lithosphere. Plate size can vary greatly, from a few hundred to thousands of kilometers across; the Pacific and Antarctic Plates are among the largest. Plate thickness also varies greatly, ranging from less than 15 km for young oceanic lithosphere to about 200 km or more for ancient continental lithosphere (for example, the interior parts of North and South America).
Information found on:
<u>https://pubs.usgs.gov/gip/dynamic/tectonic.html#:~:text=A%20tectonic%20plate%20(also%20called,both%20continental%20and%20oceanic%20lithosphere.&text=Continental%20crust%20is%20composed%20of,such%20as%20quartz%20and%20feldspar.</u>
It desolves calcium carbonate causing plates to bend and faults to occur. Faults and plates moving cases the formation of caves.
-Hopes this helps :)
Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

The velocity of the ball and the man is 0.259 m/s
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, in an isolated system, the total momentum before and after the collision must be conserved. Therefore, for the ball-man system, we can write:
where:
is the mass of the ball
is the initial velocity of the ball
is the mass of the man
is the initial velocity of the man
is the final velocity of the man and the ball after the collision
Re-arranging the equation and substituting the values, we find the final velocity:

So, the man and the ball slides on the ice at 0.259 m/s.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly