Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
Answer:
low freezing point. high vapour pressure.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>WILL</em><em> </em><em>HELP</em><em> </em><em>U</em><em>! </em><em>!</em><em>!</em><em>!</em><em>!</em><em>!</em>
Answer:
Assessment zone
Explanation:
It is the assessment zone in various security zones where active and passive security measures are employed to identify, detect, classify and analyze possible threats inside the assessment zones.
I'm not sure, I think it's option A.
Let me know if I'm wrong!
Answer:
164.87 J
Explanation:
From the question,
Work done (W) = mghcosθ........................ Equation 1
Where m = mass of the box, h = height, g = acceleration due to gravity, θ = angle to the vertical
Given: m = 25 kg, h = 2.6 meters, θ = 75°.
Constant: g = 9.8 m/s²
Substitute these value into equation 1
W = 25×9.8×2.6×cos75°
W = 164.87 J.