Balance the chemical equation for the chemical reaction.
Convert the given information into moles.
Use stoichiometry for each individual reactant to find the mass of product produced.
The reactant that produces a lesser amount of product is the limiting reagent.
The reactant that produces a larger amount of product is the excess reagent.
To find the amount of remaining excess reactant, subtract the mass of excess reagent consumed from the total mass of excess reagent given.
Probably life science or biology.
The following are the answers to the different questions:
<span>The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?
A. 101.53° C
Which of the following solutions will have the lowest freezing point?
D. 1.0 mol/kg magnesium fluoride (MgF2)
Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?
A. sodium iodide (NaI)
Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?
B. 96.3 kPa
Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?
D. 108.1°C</span>
The pH scale is used to measure the degree of acidity or alkalinity of a solution. The scale runs from 0 (very acidic solutions can have a negative pH) to 14 (very alkaline solutions can have a pH higher than this), while a neutral liquid such as pure water has a pH of 7. The pH is linked to the concentration of hydrogen ions (H +) in the solution. Diluting an acid or alkali affects the concentration of H +<span> ions in a solution and therefore affects the pH. In this activity, we will investigate how diluting an acid or alkali affects the pH.
Hope this helps:D
Have a great rest of a brainly day!</span>
The cryosphere can affect the atmosphere by letting the Earth get to warm. The cryosphere protects the Earth from getting to warm.