The partial atmospheric pressure (atm) of hydrogen in the mixture is 0.59 atm.
<h3>How do we calculate the partial pressure of gas?</h3>
Partial pressure of particular gas will be calculated as:
p = nP, where
- P = total pressure = 748 mmHg
- n is the mole fraction which can be calculated as:
- n = moles of gas / total moles of gas
Moles will be calculated as:
- n = W/M, where
- W = given mass
- M = molar mass
Moles of Hydrogen gas = 2.02g / 2.014g/mol = 1 mole
Moles of Chlorine gas = 35.90g / 70.9g/mol = 0.5 mole
Mole fraction of hydrogen = 1 / (1+0.5) = 0.6
Partial pressure of hydrogen = (0.6)(748) = 448.8 mmHg = 0.59 atm
Hence, required partial atmospheric pressure of hydrogen is 0.59 atm.
To know more about partial pressure, visit the below link:
brainly.com/question/15302032
#SPJ1
Answer:
Name Formula
nitrite ion NO2−
permanganate ion MnO4−
phosphate ion PO43−
hydrogen phosphate ion HPO42−
Explanation:
Long wave I think is the correct answer
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.
Answer:
Li2S> Na2S> K2S> CsS
Explanation:
The lattice energy of ionic species depends on the relative sizes of ions in the ionic compounds. As the size of ions increases, the lattice energy decreases and vice versa.
When the size of the anions are the same, the lattice energy now depends on the relative sizes of the cations. Therefore, since all the compounds are sulphides and the order of magnitude of ionic sizes is: Li^+ < Na^+ < K^+ < Cs^+.
Therefore, the order of decrease in lattice energy is; Li2S> Na2S> K2S> CsS