A pendulum is not a wave.
-- A pendulum doesn't have a 'wavelength'.
-- There's no way to define how many of its "waves" pass a point
every second.
-- Whatever you say is the speed of the pendulum, that speed
can only be true at one or two points in the pendulum's swing,
and it's different everywhere else in the swing.
-- The frequency of a pendulum depends only on the length
of the string from which it hangs.
If you take the given information and try to apply wave motion to it:
Wave speed = (wavelength) x (frequency)
Frequency = (speed) / (wavelength) ,
you would end up with
Frequency = (30 meter/sec) / (0.35 meter) = 85.7 Hz
Have you ever seen anything that could be described as
a pendulum, swinging or even wiggling back and forth
85 times every second ? ! ? That's pretty absurd.
This math is not applicable to the pendulum.
Answer:
5.43 x 10^-3 Nm
Explanation:
N = 52.5, radius, r = 5.35 cm = 0.0535 m, B = 0.455 T, I = 25.3 mA = 0.0253 A
Torque = N I A B Sin theta
Here, theta = 90 degree
Torque = 52.5 x 0.0253 x 3.14 x 0.0535 x 0.0535 x 0.455
Torque = 5.43 x 10^-3 Nm
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".