H2SO4 + 2KOH --> K2SO4 + 2H2O
• Before the balloon was placed inside the hot water, the pressure was the same inside and outside the balloon. The hot water raised the kinetic energy of the air molecules inside the balloon, expanding the balloon, through thermal expansion.
• (1) the pressure of air inside the balloon increased, (2) the volume of the inside of the balloon increased as well, and (3) the temperature of the balloon increased. Note that pressure and volume are inversely proportional, and pressure and temperature are directly proportional. Therefore as the temperature increases, the pressure inside will increase, causing an increase in the volume. At a certain point though the volume will increase too much as to cause a significant decrease in pressure.
• The air molecules will gain kinetic energy, hence (1) increasing the molecules's speed, and (2) heating the air molecules.
Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
Answer:
B) 16 g
Explanation:
First we <u>convert 4 moles of O₂ into moles of H₂</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 4 mol O₂ *
= 8 mol H₂
Finally we <u>convert 8 moles of H₂ into grams</u>, using <em>its molar mass</em>:
- 8 mol H₂ * 2 g/mol = 16 g
Thus, the correct answer is option B).
Answer:
alright bud lets see hmm.... the answer is a. 90.5kpa
Explanation:
92.3 kPa - 1.82 kPa = 90.5 kPa
keep up your hope also corrected me if a am wrong in anyway! :)