Rutherford was one of the early scientists who worked on the atomic model. Before his discovery of the nucleus, the widely accepted theory was J.J Thomson's Plum Pudding Model. In this model, all the protons, electrons and neutrons are in the nucleus. But the electrons are more in number such that the electrons act as the 'pudding' and the proton and nucleus the 'plum'. This was Rutherford's hypothesis in his gold foil experiment. In order to test the Plum Pudding model, he hypothesized that when a beam of light is aimed at the atom, it would not diffract because the charges in the nucleus are well-distributed. However, his experiment disproved Thomson's model. Some light indeed passed through but a few was diffracted back to the source. He concluded that this was because there is a dense mass inside the atom called nucleus. Thus, from there on, he proposed the model that the electrons are orbiting around the nucleus.
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
The answer is dissolved salts
For the answer to the question above, <span>Hydrophobic regions and hydrophilic regions in the molecules of the b-globin. The replacement causes these hemoglobin molecules to be stickies which gives the cell its sickle shape.
I hope this helps. Have a nice day!</span>