1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
3 years ago
7

A rectangular garden is 6 feet long and 4 feet wide. A second rectangular garden has dimensions that are double the dimensions o

f the first garden. What is the percent of change in perimeter from the first garden to the second garden?
Mathematics
2 answers:
Goshia [24]3 years ago
6 0
__________         _____________________
|    6 feet      |        |    6 feet       |     6 feet      |
|                   |        |                    |                    |    4 feet
|_________ |        |__________|__________|
                             |                    |                    |
                             |                    |                    |    4 feet
                             |__________|__________|

<span>the figure shows that the second garden has a circumference twice . We must , however, prove.
</span><span>Denote the sides of the first garden - a rectangle letters a and b
</span><span>circuit garden
C</span>₁<span> = 2a + 2b = 2*(a+b)
</span><span>The sides of the second garden also denoted with the letters a and b . We calculate the circuit
</span>C₂ = 2*2a + 2*2b = 4a + 4b = 4*(a+b)

k = \frac{ C_{2} }{ C_{1} }  =  \frac{4*(a+b)}{2*(a+b)}  =  \frac{2*(a+b)}{1}  = 2*(a+b)
 
2 = 2*100%=200%
200% -100% = 100%

Answer : The ratio of the second garden to the first ( ratio ) is 2 . <span>Circuit increased by 100 %</span>

Ulleksa [173]3 years ago
4 0
Double dimentions
perimiter

P=2(L+W)

if we have
L=6
W=4
P=2(6+4)
P=2(10)
P=20
original is 20
if both are doubled

6*2=12
4*2=8
P=2(12+8)
P=2(20)
P=40


from original to new is
from 20 to  40
what is percent  change?
find chnage
new-original=change
40-20=20
percent change=change/original
20/20=1=100%

answer is 100%
You might be interested in
A tourist group arrived at the boat dock for a boat ride in the morning. There were 252 people in the group. Another tourist gro
4vir4ik [10]
Its 15 boats bcuz...252+288=540 and 540/36= 15 boats :D
5 0
3 years ago
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
2 years ago
In the diagram <br> What is m
lakkis [162]
M is going to be 24. hope this helps
8 0
3 years ago
Three out of every 7 of the girls in class have bikes. If 12 girls have bikes, how many have not?
eduard
3    *4    12   have 
-    = 
7     *4    28  total 

28-12=16
7 0
3 years ago
Read 2 more answers
segment MN is shown. Point M is located at (7,6). Point N is located at (7,-4) What is the midpoint segment of MN
Luda [366]

Answer:

The midpoint of MN is <u>(7,1)</u>

Add the x coordinates 7+7=14 then you divide that by 2 giving you 7.

Then you add the y coordinates together 6+(-4)=2 then divide by 2 and that gives you 1. Therefore the answer is (7,1)

6 0
2 years ago
Other questions:
  • Question 9 i mark as brainliest ​
    10·2 answers
  • If P(A)= 0.3 and P(B|A)=0.9 what is P(A B)?
    7·1 answer
  • A poker hand consisting of 9 cards is dealt from a standard deck of 52 cards. Find the probability that the hand contains exactl
    7·1 answer
  • How many inches are in 13 feet
    8·2 answers
  • What does more than mean in an word problem​
    13·1 answer
  • A circle with radius of \greenD{6\,\text{cm}}6cmstart color #1fab54, 6, start text, c, m, end text, end color #1fab54 sits insid
    7·1 answer
  • In your sock drawer you have 6 blue, 7 gray, and 2 black socks. Half asleep one morning you grab 2 socks at random and put them
    14·1 answer
  • What is the value of 1 x ÷ 5, when x = 80? enter your answer in the box.
    5·2 answers
  • What is the value of x?<br> (3x+ 30)<br> 20, 15, 25, 10
    5·2 answers
  • Rick used 4 2/3 yards of fabric to sew 3 1/2 shirts. What is the unit rate of cloth he used in terms of yards per shirt?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!