Answer:
N2 + 3H2 → 2NH3. 14 moles a. If 6 mol of H2 are consumed, how many moles of NH3 are produced? ... a 3 mol H₂. 4. How many moles of nitrogen are needed to make 11 moles of NH3? Il mol NH₃ x Imol Na = 15.5
B
We can perceive this question as a vector (which has both magnitude and direction). The magnitude is the displacement and the direction is where they are headed.
Explanation:
The displacement (magnitude of the vector) for Callie, which is also equal to the distance, is; 4m + 3m = 7m while that of Sue is 5m. Therefore the displacement for Callie is greater than Sue’s.
Nonetheless the direction in the vector is the same, which is towards point C.
Learn More:
For more on vectors;
brainly.com/question/12006588
brainly.com/question/11823989
#LearnWithBrainly
Answer:
0.33 mol/kg NH₃
Explanation:
Data:
b(NH₃) = 0.33 mol/kg
b(Na₂SO₄) = 0.10 mol/ kg
Calculations:
The formula for the boiling point elevation ΔTb is

i is the van’t Hoff factor — the number of moles of particles you get from a solute.
(a) For NH₃,
The ammonia is a weak electrolyte, so it exists almost entirely as molecules in solution.
1 mol NH₃ ⟶ 1 mol particles
i ≈ 1, and ib = 1 × 0.33 = 0.33 mol particles per kilogram of water
(b) For Na₂SO₄,
Na₂SO₄(aq) ⟶ 2Na⁺(aq) + 2SO₄²⁻(aq)
1 mol Na₂SO₄ ⟶ 3 mol particles
i = 1 and ib = 3 × 0.10 = 0.30 mol particles per kilogram of water
The NH₃ has more moles of particles, so it has the higher boiling point.
A displacement reaction will occur from the system given above. The chlorine molecules will displace the bromide ions in the solution of sodium bromide. The reaction will yield to sodium chloride and bromine. The reaction will be:
2NaBr + Cl2 = 2NaCl + Br2
Methane, nitrogen, dark matter, and radiation.