Answer:
Explanation:
Given
Initial Intensity of light is S
when an un-polarized light is Passed through a Polarizer then its intensity reduced to half.
When it is passed through a second Polarizer with its transmission axis 

here 


When it is passed through third Polarizer with its axis
to first but
to second thus 



When middle sheet is absent then Final Intensity will be zero
Answer:
40 ms¯².
Explanation:
To solve this problem, we shall illustrate the question with a diagram.
The attached photo gives a better understanding of the question.
From the attached photo:
Velocity (v) = 160 ms¯¹
Time (t) = 4 secs.
Acceleration (a) =?
Acceleration (a) = Velocity (v) /time (t)
a = v/t
a = 160/4
a = 40 ms¯²
Therefore, the initial acceleration of the rocket is 40 ms¯².
Answer:
34.45m
Explanation:
Using the equation of motion formula v² = u²+2as to get the distance travelled
v is the final velocity = 26m/s
u is the initial velocity = 0m/s
a is the acceleration due to gravity = 9.81m/s²
S is the distance travelled
Substituting the given values into the formula;
26² = 0²+2(9.81)s
676 = 0 + 19.62s
19.62s = 676
s = 676/19.62
s = 34.45m
Hence the distance she would travel during the race is 34.45m
Divide 360000 by 200 to get 1800 seconds, or half of hour.
<u>Answer:</u> The remaining sample of X is 6.9 grams.
<u>Explanation:</u>
All the radioactive reactions follow first order kinetics.
The equation used to calculate rate constant from given half life for first order kinetics:

We are given:

Putting values in above equation, we get:

The equation used to calculate time period follows:

where,
= initial mass of sample X = 78 g
N = remaining mass of sample X = ? g
t = time = 16.5 min
k = rate constant = 
Putting values in above equation, we get:

Hence, the remaining amount of sample X is 6.9 g