Answer:
Explanation:
A light year is a unit of length and is defined as "the distance a photon would travel in vacuum during a Julian year at the speed of light at an infinite distance from any gravitational field or magnetic field. "
In other words: It is the distance that the light travels in a year.
This unit is equivalent to
, which mathematically is expressed as:

Doing the conversion:
This is the distance from Earth to Sirius in miles.
The answer is option D)
this is because the heat radiated by the flame is mostly absorbed by the air surrounding it, so the air becomes hot and its density decreases (because of expansion), therefore it goes up and it is replaced by cooler air. since all of the hot air flies up, non goes side ways to heat up the match stick, hence it remains cool and does not light up.
option A) also sounds correct, but it isn't. this is because the flame IS hot enough to burn the match stick, it's just that the match stick is positioned the wrong way
To solve this problem we will apply the concepts related to the intensity included as the power transferred per unit area, where the area is the perpendicular plane in the direction of energy propagation.
Since the propagation occurs in an area of spherical figure we will have to


Replacing with the given power of the Bulb of 100W and the radius of 2.5m we have that


The relation between intensity I and 

Here,
= Permeability constant
c = Speed of light
Rearranging for the Maximum Energy and substituting we have then,




Finally the maximum magnetic field is given as the change in the Energy per light speed, that is,



Therefore the maximum value of the magnetic field is 
Answer:
The answer is C. 120,000 J.
Explanation: