Answer:
Given equation of parabola is
and
2
=64x ......(i)
The point at which the tangent to the curve is parallel to the line is the nearest point on the curve.
On differentiating both sides of equation (i), we get
2 y
dx
d y
=64
⇒
dx
d y
=
and
32
Also, slope of the given line is −
3
4
∴−
3
4
=
and
32
⇒and=−24
From equation (i), (−24)
2
=64x⇒x=9
∴ the required point is (9,−24)
Explanation:
This is the correct answer you want
please follow the
Answer:
b.)
Explanation:
Because you would have a different weight on the moon because of it's low gravity
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
The atom that is made up of two protons is He. The number of neutrons is also two. The number of electrons matters in the charge. So to make 10 electrons, we add 8 more. hence, 4/2 He 8-.
Answer: Empirical formula is 
Explanation: We are given the masses of elements present in a sample of compound. To evaluate empirical formula, we will be following some steps.
<u>Step 1 :</u> Converting each of the given masses into their moles by dividing them by Molar masses.

Molar mass of Carbon = 12.0 g/mol
Molar mass of Hydrogen = 1.0 g/mol
Molar mass of Oxygen = 16.0 g/mol
Moles of Carbon = 
Moles of Hydrogen = 
Moles of Oxygen = 
<u>Step 2: </u>Dividing each mole value by the smallest number of moles calculated above and rounding it off to the nearest whole number value
Smallest number of moles = 13.76 moles



<u>Step 3:</u> Now, the moles ratio of the elements are represented by the subscripts in the empirical formula
Empirical formula becomes = 