1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allochka39001 [22]
3 years ago
11

The product of voltage times amperage is known as what? amperes current resistance power

Physics
2 answers:
pav-90 [236]3 years ago
7 0

Yo sup??

Its called as power

P=V*I

Hope this helps

UNO [17]3 years ago
5 0

The product of (voltage) times (current, in Amperes) is POWER.

You might be interested in
Which is more bussin? mcdonald’s or taco bell
Maksim231197 [3]

Answer:

it depends on what you wanna get

if its chicken nuggies then mcdonalds

if its bomb a.ss tacos that taste pretty good but with meat that looks like literal sh.it then probably tacobell

7 0
2 years ago
Read 2 more answers
Which actions are examples of conserving resources? Check all that apply.
uysha [10]

Answer:

1st, 2nd, and 4th

Explanation:

1st conserves gasoline/petroleum

2nd conserves electricity

4th conserves paper

6 0
3 years ago
Read 2 more answers
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
Near the equator, the Earth's magnetic field points almost horizontally to the north and has magnitude B=.5 x 10^-4T. What shoul
Nataly [62]
Base in your question about the magnetic field of the Earth near the equator where as its almost horizontally to the north and has magnitude of B=0.5x10^-4t, the answer is <span>Velocity of electron will be westwards.</span>
6 0
3 years ago
What is heat?
OLEGan [10]
Well you need to have lots of heat
7 0
3 years ago
Other questions:
  • Natural gas is very abundant in the United States. Compared to other fossil fuels, which describes the waste products of the com
    15·2 answers
  • How do I find magnitude of acceleration?
    7·1 answer
  • A car goes 152 miles in 2 hours and 5 minutes. Calculate the car’s speed in units of m/s. 1 mi = 1600 m.
    11·2 answers
  • According to the Guinness Book of World Records (1999) the highest rotary speed ever attained was 2010 m/s (4500 mph) The rotati
    9·1 answer
  • Does wve travel faster through glass or air
    11·1 answer
  • Place these bodies of our solar system in the proper order of formation.
    6·2 answers
  • A car has an initial velocity of +30.0 m/s and undergoes an acceleration of -5.00 m/s squared for 5.00 seconds what is the displ
    7·1 answer
  • Can anybody help me it says, Model the force that would cause each velocity change.
    5·2 answers
  • You are riding in an elevator that is accelerating upward. Suppose you stand on a scale. The reading on the scale is __________.
    13·2 answers
  • Question 1
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!