Answer:
A
Explanation:
because thats what I put and got it right
In my text book for social studies it says a canal
Answer:
Avion A (10000 meters).
Explanation:
Deje que la altura de los aviones sea A y B respectivamente.
Dados los siguientes datos;
Altura A = 10000 metros
Altura B = 33300 pies
Para encontrar el avión que voló más alto, tendríamos que hacer alguna conversión de unidades.
Conversión:
Metros a centímetros;
1 metro = 100 cm
10000 metros = 100 * 10000 = 1.000.000 centímetros.
Por lo tanto, la altura A en cm = 1,000,000 centímetros
Pies a centímetros;
1 pie = 30,48 centímetros
33300 pies = 33300 * 30,48 = 1014984 centímetros.
Por lo tanto, la altura B en cm = 1014984 centímetros.
De los cálculos anteriores, podemos deducir que el avión A voló más alto.
Answer:
Spiral galaxies consist of a flat, rotating disk of stars, gas and dust, and a central concentration of stars known as the bulge. These are surrounded by a much fainter halo of stars, many of which reside in globular clusters.
Elliptical galaxies have smooth, featureless light-profiles and range in shape from nearly spherical to highly flattened, and in size from hundreds of millions to over one trillion stars. In the outer regions, many stars are grouped into globular clusters. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity They are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure. Collectively they are thought to make up about a quarter of all galaxies.
irregular galaxies were once spiral or elliptical galaxies but were deformed by gravitational action. they are shapeless.
Answer:
Revolutions made before attaining angular velocity of 30 rad/s:
θ = 3.92 revolutions
Explanation:
Given that:
L(final) = 10.7 kgm²/s
L(initial) = 0
time = 8s
<h3>
Find Torque:</h3>
Torque is the rate of change of angular momentum:

<h3>Find Angular Acceleration:</h3>
We know that
T = Iα
α = T/I
where I = moment of inertia = 2.2kgm²
α = 1.34/2.2
α = 0.61 rad/s²
<h3>
Find Time 't'</h3>
We know that angular equation of motion is:
ω²(final) = ω²(initial) +2αθ
(30 rad/s)² = 0 + 2(0.61 rad/s²)θ
θ = (30 rad/s)²/ 2(0.61 rad/s²)
θ = 24.6 radians
Convert it into revolutions:
θ = 24.6/ 2π
θ = 3.92 revolutions