Answer:
The answer would be A. - the temperature remains constant
Explanation:
An isothermal process is a change of a system, in which the temperature remains constant: ΔT = 0
Answer:middle
Explanation:
Because it will make the seasaw balanced
Answer:
Part 1 
Part 2 
Part 3 
Explanation:
Given
Number of protons 
Radius of nucleus 
Distance of the electrons 
Part 1
Electric field produced by just outside its surface

Part 2
Electric field produced by just outside its surface

Part 3
The net electric field inside a uniform shell of negative charge is zero because the electric flux lines cancel out each other
hence, the solution is
Part 1 
Part 2 
Part 3 
<h3><u>Answer and Explanation</u>;</h3>
- input force refers to the force exerted on a machine, also known as the effort, while the output force is the force machines produce or the Load. The ratio of output force to input force gives the mechanical advantage of a simple machine
- <em><u>The output force exerted by the rake must be less than the input force because one has to use force while raking. The force used to move the rake is the input force. </u></em>
- <em><u>The rake is not going to be able to convert all of the input force into output force, the force the rake applies to move the leaves, because of friction.</u></em>