Answer:
Solution is in explanation
Explanation:
part a)
For normalization we have
![\int_{0}^{\infty }f(x)dx=1\\\\\therefore \int_{0}^{\infty }ae^{-kx}dx=1\\\\\Rightarrow a\int_{0}^{\infty }e^{-kx}dx=1\\\\\frac{a}{-k}[\frac{1}{e^{kx}}]_{0}^{\infty }=1\\\\\frac{a}{-k}[0-1]=1\\\\\therefore a=k](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7Dae%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5CRightarrow%20a%5Cint_%7B0%7D%5E%7B%5Cinfty%20%7De%5E%7B-kx%7Ddx%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bkx%7D%7D%5D_%7B0%7D%5E%7B%5Cinfty%20%7D%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7B-k%7D%5B0-1%5D%3D1%5C%5C%5C%5C%5Ctherefore%20a%3Dk)
Part b)
![\int_{0}^{L }f(x)dx=1\\\\\therefore Re(\int_{0}^{L }ae^{-ikx}dx)=1\\\\\Rightarrow Re(a\int_{0}^{L }e^{-ikx}dx)=1\\\\\therefore Re(\frac{a}{-ik}[\frac{1}{e^{ikx}}]_{0}^{L})=1\\\\\Rightarrow Re(\frac{a}{-ik}(e^{-ikL}-1))=1\\\\\frac{a}{k}Re(\frac{1}{-i}(cos(-kL)+isin(-kL)-1))=1](https://tex.z-dn.net/?f=%5Cint_%7B0%7D%5E%7BL%20%7Df%28x%29dx%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cint_%7B0%7D%5E%7BL%20%7Dae%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28a%5Cint_%7B0%7D%5E%7BL%20%7De%5E%7B-ikx%7Ddx%29%3D1%5C%5C%5C%5C%5Ctherefore%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%5B%5Cfrac%7B1%7D%7Be%5E%7Bikx%7D%7D%5D_%7B0%7D%5E%7BL%7D%29%3D1%5C%5C%5C%5C%5CRightarrow%20Re%28%5Cfrac%7Ba%7D%7B-ik%7D%28e%5E%7B-ikL%7D-1%29%29%3D1%5C%5C%5C%5C%5Cfrac%7Ba%7D%7Bk%7DRe%28%5Cfrac%7B1%7D%7B-i%7D%28cos%28-kL%29%2Bisin%28-kL%29-1%29%29%3D1)

Answer:
When argon changes from a gas to a liquid, the forces between the molecules become stronger so the particles become closer together and come into come into contact more often. The particles move at a less faster rate as the have less kinetic energy due to decrease in temperature. When argon changes from a liquid to a solid, the forces become even stronger so the particles are arranged in fixed positions and vibrate around a fixed point as they cannot move past each other
Answer:
COMPLETE QUESTION
A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?
Explanation:
Given that,
Extension of spring
x = 0.0208m
Mass attached m = 3.39kg
Additional mass to have a frequency f
Let the additional mass be m
Using Hooke's law
F= kx
Where F = W = mg = 3.39 ×9.81
F = 33.26N
Then,
F = kx
k = F/x
k = 33.26/0.0208
k = 1598.84 N/m
The frequency is given as
f = ½π√k/m
Make m subject of formula
f² = ¼π² •(k/m
4π²f² = k/m
Then, m4π²f² = k
So, m = k/(4π²f²)
So, this is the general formula,
Then let use the frequency above
f = 3Hz
m = 1598.84/(4×π²×3²)
m = 4.5 kg
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
Answer:
Adding heat makes the particles move faster so the particles have more kinetic energy when more thermal energy is added
Explanation: