Answer:
1. d = 0.415 m.
2. Q = 2.285 x 10^{-10} C.
Explanation:
The electric field and potential can be found by the following equations:

Applying these equations to the given variables yields

Divide the first line to the second line:

Using this distance in either of the equations give the magnitude of the charge.

The velocity, 50 m/s, has two components - vertical and horizontal velocities.
The vertical component = 50 sin 30 = 25 m/s
The horizontal component = 50 cos 30 = 43.3 m/s
(a) Let t be the time taken for the vertical component to reach its peak from initial velocity = 25 m/s to its final velocity = 0.
Using the linear motion equation v = u - gt
0 = 25 - 10t
t = 2.5 s
Time taken to go up and down = 5 s
Time to hit the ground = 5 s
(b) Horizontal distance dealt x = 43.3 * 5 = 216.5 m
This is not the correct answer, but explains the problem thoroughly.
Noise can be measured in decibels.
A.) For letter a, we use the law of universal gravitation using the constant G = 6.674×10−<span>11 m3</span>⋅kg−1⋅s−<span>2
Grav. F = G*m1*m2*(1/d^2)
m1 is mass of electron = </span>9.11 × 10-31<span> kg
m2 is mass of proton = </span>1.67 × 10<span>-27 kg
d = 4.5 nm = 4.5 x 10^-9 m
Grav F = 5.01 x 10^-51 N
b.) </span>For letter b, we use the Coulomb's using the constant k = 9×10^9 N
Electric force = k*Q1*Q2*(1/d^2)
Q1 is charge of electron = -1.6 × 10-19 C
Q2 is charge of proton = +1.6 × 10-19 C
Electric force = 1.14 x 10^-11 N
Check the picture below.
now, for 6 triangles, well, simply 6*6.