Wavelength-
the distance between two successive peaks on adjacent waves is its..
Answer:
17)c: the reactivity of a metal.
Explanation:
Answer :
The Nernst equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Anode]}{[Cathode]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BAnode%5D%7D%7B%5BCathode%5D%7D)
where,
= standard cell potential
n = number of electrons in oxidation-reduction reaction
F = Faraday constant = 96500 C
R= gas constant = 8.314 J/Kmol
T = temperature
[Anode] = anodic ion concentration
[Cathode] = cathodic ion concentration
<h3>
Answer:</h3>
Al- [Ne] 3s²3p¹
As- [Ar] 4s²3d¹⁰ 4p³
Explanation:
- Electron configuration of an element shows the arrangement of electrons in the energy levels or orbitals in the atom.
- Noble-gas configuration involves use of noble gases to write the configuration of other elements.
- This is done by identifying the atomic number of the element and then identifying the noble gas that comes before that particular element on the periodic table.
- Aluminium: The atomic number of Al is 13. The noble gas before Aluminium is Neon which has 10 electrons. Therefore the remaining 3 electrons fills up the 3s and 3p sub orbitals.
- Thus, the noble-gas configuration of Al is [Ne] 3s²3p¹
2. Arsenic, Atomic number is 33
- Noble gas before Arsenic is Ar,. Argon has 17 electrons, then the remaining electrons fills up the 4s, 3d and 4p sub-orbitals.
- Thus, the noble-gas configuration of As is [Ar] 4s²3d¹⁰ 4p³