Answer:
well since 3 is greater than 2 it would be 3 moles of sulfur.
Explanation:
NH₃:
N = 8*10²²
NA = 6.02*10²³
n = N/NA = 8*10²²/6.02*10²³ ≈ 1.33*10⁻¹=0.133mol
O₂:
N=7*10²²
NA = 6.02*10²³
n = N/NA = 7*10²²/6.02*10²³ = 1.16*10⁻¹=0.116mol
4NH₃ <span>+ 3O</span>₂ ⇒<span> 2N</span>₂<span> + 6H</span>₂<span>O
</span>4mol : 3mol : 2mol
0.133mol : 0.116mol : 0,0665mol
limiting reactant
N₂:
n = 0.0665mol
M = 28g/mol
m = n*M = 0.0665mol*28g/mol = <u>1,862g</u>
Answer:
A. 0.90 L.
Explanation:
- NaOH solution will react with H₂SO₄ according to the balanced reaction:
<em>H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O.</em>
<em>1.0 mole of H₂SO₄ reacts with 2.0 moles of NaOH.</em>
- For NaOH to react completely with H₂SO₄, the no. of millimoles should be equal.
<em>∴ (MV) NaOH = (xMV) H₂SO₄.</em>
x for H₂SO₄ = 2, due to having to reproducible H⁺ ions.
<em>∴ V of NaOH = (xMV) H₂SO₄/ M of NaOH</em> = 2(0.6 L)(3.0 M)/(4.0 M) = <em>0.90 L.</em>
Answer: A chemical process must occur and then changes between the state of the reactants and the state of the products can be determined
Explanation: Enthalpy represents the sum of the energy of the system with the product of the pressure and volume of that system. As a thermodynamic property, it expresses the ability to release heat from the system. In fact, enthalpy tells us how much heat and work has changed during the chemical reaction under constant pressure. When measuring, measurements of the difference in enthalpy between the two states of the system is performed, before and after the chemical reaction, since total enthalpy can not be measured. This measurement of the enthalpy change can tell us, for example, whether the heat was released from the system during the reaction, or the system absorbed the heat.