Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:

You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!
group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1
we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!
Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.
Answer:
The answer to your question is: density = 4 g/cm³
Explanation:
Data
Volume = 100 cm³
Mass = 400 g
Density = ?
Formula
density = mass/volume
substitution
density = 400/100 = 4 g/cm³
Q = mct
-Q= energy in Joules
-m = mass in grams
-c= specific heat capacity in J/g degree C
-t = delta temperature in degrees Celsius
So,
Q = m c t
Q = (7 grams)(0.448J/g C)(750 C - 25 C)
Q = 2273.6 J
Your final answer = 2273.6 Joules
Answer:
1.Most metal oxides are insoluble in water but some of these (e.g. Na2O.
Explanation:
2.: (i) A hissing sound is observed.
1.ii) The mixture starts boiling and lime water is obtained.