..............................................A
Answer:
For a material to be a good conductor, the electricity passed through it must be able to move the electrons; the more free electrons in a metal, the greater its conductivity.
Answer:
F = 0N
Explanation:
The force between two charges is given by

where r is the distance between the charges and K is the Coulomb's constant
(k=8-89*10^9Nm^2/C^2)
The force in the first charge is only the sum of the forces due to the other charges. Hence we have


Ft=0N
Hope this helps!!
Answer:
Induced emf in the loop is 0.02208 volt.
Induced current in the loop is 0.0368 A.
Explanation:
Given that,
Area of the single loop, 
The initial value of uniform magnetic field, B = 3.8 T
The magnetic field is decreasing at a constant rate, 
(a) The induced emf in the loop is given by the rate of change of magnetic flux.

(b) Resistance of the loop is 0.6 ohms. Let I is the current induced in the loop. Using Ohm's law :

Hence, this is the required solution.
As per Einstein's theory of relativity we know that when an object will move with the speed comparable to the speed of light then the length of the object will be different from its length at rest position
This is also known as length contraction theory
As we know here that

so here we know that
v = 0.95 c
so from above equation we will have


so here the length will be SHORTER