Answer: 75%
Explanation:
The following information can be gotten from the question:
Waste = 70kg
Theoretical yield = 280kg
Therefore, the actual yield will be the difference between the theoretical yield and the waste which will be:
= 280kg - 70kg = 210kg
The percent yield will now be:
= Actual yield / Theoretical yield × 100
= 210/280 × 100
= 3/4 × 100
= 75%
<u>Answer;</u>
= 0.422 M
<h3><u>Explanation;</u></h3>
Molarity or concentration is the number of moles of a solute in 1 liter of a solution.
Therefore; Molarity = n/V ; where n is the number of moles and V is the volume of the solution in L.
Number of moles = Mass/molar mass
= 289 g/342.2965g/mol
= 0.844 Moles
Therefore;
Molarity = 0.844 moles/ 2L
= 0.422 M
<span>Answer: Correct answer is 507g FeCl2 x (1 mol FeCl2 / 126.8 g FeC2) x (1 mol Fe(OH)2 / 1 mol FeCl2) x (89.8 g Fe(OH)2/ 1 mol Fe(OH)2) = 359 g Fe(OH)2.</span>
Answer:
Eºcell = -1.78 V
Explanation:
The Eº cell is an intensive property, i.e they do not depend on the quantity of material present and the desired reaction in our problem is exactly half the reverse of the one given, the Eºcell will then be the negative of the first then Eºcell is -1.78 V and the redox reaction will be non-spontaneous as opposed to the first.
To determine the pH of a solution which has 0.195 M hc2h3o2 and 0.125 M kc2h3o2, we use the ICE table and the acid dissociation constant of hc2h3o2 <span>to determine the concentration of the hydrogen ion present at equilibrium. We do as follows:
HC2H3OO = H+ + </span>C2H3OO-
KC2H3OO = K+ + C2H3OO-
Therefore, the only source of hydrogen ion would be the acid. We use the ICE table,
HC2H3OO H+ C2H3OO-
I 0.195 0 0.125
C -x +x +x
------------------------------------------------------------------
E 0.195-x x 0.125 + x
Ka = <span>1.8*10^-5 = (0.125 + x) (x) / 0.195 -x
x = 2.81x10^-5 M = [H+]
pH = - log [H+]
pH = -log 2.81x10^-5
pH = 4.55
Therefore, the pH of the resulting solution would be 4.55.</span>