Given:
Temperature of water,
=
=273 +(-6) =267 K
Temperature surrounding refrigerator,
=
=273 + 21 =294 K
Specific heat given for water,
= 4.19 KJ/kg/K
Specific heat given for ice,
= 2.1 KJ/kg/K
Latent heat of fusion,
= 335KJ/kg
Solution:
Coefficient of Performance (COP) for refrigerator is given by:
Max
= 
=
= 9.89
Coefficient of Performance (COP) for heat pump is given by:
Max
= 
= 10.89
Answer:
Technicians A is right for the answer
Answer:
Hydrostatic force = 41168 N
Explanation:
Complete question
A triangular plate with a base 5 ft and altitude 3 ft is submerged vertically in water so that the top is 4 ft below the surface. If the base is in the surface of water, find the force against onr side of the plate. Express the hydrostatic force against one side of the plate as an integral and evaluate it. (Recall that the weight density of water is 62.5 lb/ft3.)
Let "x" be the side length submerged in water.
Then
w(x)/base = (4+3-x)/altitude
w(x)/5 = (4+3-x)/3
w(x) = 5* (7-x)/3
Hydrostatic force = 62.5 integration of x * 4 * (10-x)/3 with limits from 4 to 7
HF = integration of 40x - 4x^2/3
HF = 20x^2 - 4x^3/9 with limit 4 to 7
HF = (20*7^2 - 4*7^(3/9))- (20*4^2 - 4*4^(3/9))
HF = 658.69 N *62.5 = 41168 N
Answer:
work done = 48.88 ×
J
Explanation:
given data
mass = 100 kN
velocity = 310 m/s
time = 30 min = 1800 s
drag force = 12 kN
descends = 2200 m
to find out
work done by the shuttle engine
solution
we know that work done here is
work done = accelerating work - drag work - descending work
put here all value
work done = ( mass ×velocity ×time - force ×velocity ×time - mass ×descends ) 10³ J
work done = ( 100 × 310 × 1800 - 12×310 ×1800 - 100 × 2200 ) 10³ J
work done = 48.88 ×
J
Answer:
The pressure drop is 269.7N/m^2
Explanation:
∆P = ∆h × rho × g
∆h = 3.2cm = 3.2/100 = 0.032m, rho = 860kg/m^3, g = 9.8m/s^2
∆P = 0.032×860×9.8 = 269.7N/m^2