Answer:
(we use hess's law) it is so simple but the second reaction is not correct please right it
Answer:
All of these compounds are made from the element copper. Copper Acetates, Cuprous Oxide, Cupric Oxide (otherwise know as black copper oxide), Cupric Chloride, Copper Oxychloride, Cuprous Chloride, Cupric Nitrate, Copper Cyanide.
Explanation:
Copper is considered an element. You can use copper for Jewelry, Table Tops, Sinks, Dark Chocolate, Leafy Greens, Lobster, Nuts and Seeds, Mushrooms, Oysters, Liver and etc other nutrience. Copper is an easily molded base metal that is often added to precious metals to improve their elasticity, flexibility, hardness, colour, and resistance to corrosion.
Explanation:
3CaBr2 + 2K3N → 6KBr + Ca3N2
Given what we know, the tool in question that will help the student collect data regarding the transfer of kinetic energy between water and ice would be a thermometer.
<h3>How does the thermometer measure kinetic energy?</h3>
It does not do so directly. However, kinetic energy in water molecules is reflected in the temperature of the water. When water molecules increase their kinetic energy and move more, they become hotter. Increased or decreased heat is an indirect way to measure the transfer of kinetic energy in water.
Therefore, given that the temperature of the water is a reflection of the transfer of kinetic energy happening, we can confirm that the tool that will help the student collect the data needed is a thermometer.
To learn more about kinetic energy visit:
brainly.com/question/999862?referrer=searchResults
Answer:
Explanation:
All the colligatives properties are modified by the Van't Hoff factor. This is shown as i, in the formula of the colligative properties freezing point depression, boiling point elevation, and osmotic pressure.
The Van't Hoff factor shows the number of particles into which the solute dissociates. In organic compounds we use 1, in inorganic compounds we have to think the dissociation. For example in aquous solutions, inorganic salts as AgNO₃ and CaCl₂ dissociate like this:
AgNO₃ → Ag⁺ + NO₃⁻
CaCl₂ → Ca²⁺ + 2Cl⁻
AgNO₃ has 2 moles of ions and CaCl₂ has 3 moles.
In urea: i = 1
In silver nitrate: i = 2
In calcium chloride: i = 3
The i = 3 for calcium chloride, makes that this salt has the highest osmotic pressure, highest vapor pressure and highest boiling point.