Answer:it’s C
Explanation:
A distant luminous object travels rapidly away from an observer.
Answer:
Entropy.
Explanation:
I really hope this is right! sorry if its wrong
Answer:
the problem is that Gary is not the smartest snail.the hypothesis is that he thinks he can get smarter by eating super snail food everyday.
hope this helps
Answer:
_5_ AsO2−(aq) + 3 Mn2+(aq) + _2_ H2O(l) → _5_ As(s) + _3_ MnO4−(aq) + _4_ H+(aq)
Explanation:
Step 1:
The unbalanced equation:
AsO2−(aq) + 3 Mn2+(aq) + H2O(l) → As(s) + MnO4−(aq) + H+(aq)
Step 2:
Balancing the equation.
AsO2−(aq) + 3Mn2+(aq) + H2O(l) → As(s) + MnO4−(aq) + H+(aq)
The above equation can be balanced as follow:
There are 3 atoms of Mn on the left side of the equation and 1 atom on the right side. It can be balance by putting 3 in front of MnO4− as shown below:
AsO2−(aq) + 3Mn2+(aq) + H2O(l) → As(s) + 3MnO4−(aq) + H+(aq)
There are 12 atoms of O on the right side and a total of 3 atoms on the left side. It can be balance by putting 5 in front of AsO2− and 2 in front of H2O as shown below:
5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → As(s) + 3MnO4−(aq) + H+(aq)
There are 4 atoms of H on the left side and 1 atom on the right side. It can be balance by putting 4 in front of H+ as shown below:
5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → As(s) + 3MnO4−(aq) + 4H+(aq)
There are 5 atoms of As on the left side and 1 atom on the right side. It can be balance by putting 5 in front of As as shown below:
5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → 5As(s) + 3MnO4−(aq) + 4H+(aq)
Now the equation is balanced
Explanation:
1. Boyle's Law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)

2. Charles' Law states that volume is directly proportional to the temperature of the gas at constant pressure and number of moles.
(At constant pressure and number of moles

3. Gay Lussac's Law states that tempertaure is directly proportional to the pressure of the gas at constant volume and number of moles of gas
(At constant volume and number of moles)
