<span>The addition and subtraction of negatively charged electrons can easily change an atom’s charge, because they perpetually spin in valence shells outside the nucleus. It is easier for a neighboring atom to share or steal an electron rather than a positively charged proton, which is found in the nucleus. It requires a strong energy input to split a proton free from other protons and neutrons. thus, the atoms lose or gain electrons from neighboring ones and become what is known as "ions". Hope it helped!</span>
Answer:
B) 16 g
Explanation:
First we <u>convert 4 moles of O₂ into moles of H₂</u>, using the <em>stoichiometric coefficients of the balanced reaction</em>:
- 4 mol O₂ *
= 8 mol H₂
Finally we <u>convert 8 moles of H₂ into grams</u>, using <em>its molar mass</em>:
- 8 mol H₂ * 2 g/mol = 16 g
Thus, the correct answer is option B).
Answer:
i think it's C
Hope It Helps!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! :D
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.