Dendrites, the cell body, axon, terminal branches of the axon
Answer:
The Forces of Flight
At any given time, there are four forces acting upon an aircraft.
These forces are lift, weight (or gravity), drag and thrust. Lift is
the key aerodynamic force that keeps objects in the air. It is the
force that opposes weight; thus, lift helps to keep an aircraft in
the air. Weight is the force that works vertically by pulling all
objects, including aircraft, toward the center of the Earth. In order
to fly an aircraft, something (lift) needs to press it in the opposite
direction of gravity. The weight of an object controls how strong
the pressure (lift) will need to be. Lift is that pressure. Drag is a
mechanical force generated by the interaction and contract of a
solid body, such as an airplane, with a fluid (liquid or gas). Finally,
the thrust is the force that is generated by the engines of an
aircraft in order for the aircraft to move forward.
Explanation:
Answer: W = 294 J
Explanation: Solution:
Work is expressed as the product of force and the distance of the object.
W = Fd where F = mg
W= Fd
= mg d
= 15 kg ( 9.8 m/s²) ( 2m )
= 294 J
1. Kinetic
He makes the ball move by kicking it, which increases the kinetic energy
(a) The electrons move horizontally from west to east, while the magnetic field is directed downward, toward the surface. We can determine the direction of the force on the electron by using the right-hand rule:
- index finger: velocity --> due east
- middle finger: magnetic field --> downward
- thumb: force --> due north
However, we have to take into account that the electron has negative charge, therefore we have to take the opposite direction: so, the magnetic force is directed southwards, and the electrons are deflected due south.
b) From the kinetic energy of the electrons, we can find their velocity by using

where K is the kinetic energy, m the electron mass and v their velocity. Re-arranging the formula, we find

The Lorentz force due to the magnetic field provides the centripetal force that deflects the electrons:

where
q is the electron charge
v is the speed
B is the magnetic field strength
m is the electron mass
r is the radius of the trajectory
By re-arranging the equation, we find the radius r:

And finally we can calculate the centripetal acceleration, given by: